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Session
Objectives

Define artificial
intelligence & nursing
policy implications

Discuss different
methodologic approaches
that incorporate artificial
intelligence.

Explore fairness and bias
in artificial intelligence in
research.
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Definitions: what is Al?

* Al technology mimics human cognition to enhance
data processing, insight generation, and automation
across domains.

e Utilizing state-of-the-art Al technology has the
potential to refine clinical outcomes and enrich
patients’ and their families lives:

* Enhanced analysis and utilization of vast nursing
data.

* Improved healthcare delivery tailored to individual
and community needs.

* Empowered healthcare professionals in making
informed, timely decisions.







How frequently do you use generative Al tools such as ChatGPT,
Gemini, or Perplexity?

Never

Once a month

Weekly

Join at: _
vevox.app Daily

Cannot live without it!

ID:
148-736-399
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e ICN

International
Council of Nurses

Digital health transformation and nursing practice

The digital technology revolution is supporting the rapid and positive transformation
of healthcare systems—it is facilitating the delivery of nursing care and how people
engage with their health and wellness. The use of digital health technologies is part of
contemporary nursing practice. Digital technologies have the potential to support
equitable and universal access to health services, increase the efficiency and
reliability of health systems, improve patient and health worker safety, respond to




Al in Nursing:

Key Priorities

1. Understanding Data and Al Technology

Nurses must understand how their documentation impacts Al
tools.

Integrate Al knowledge into nursing education.

2. Involvement in Al Development

Nurses should participate in Al development and implementation.

Foster interdisciplinary collaborations in education and practice.
3. Global Health and Humanitarian Efforts

Leverage nursing's potential to use Al for addressing healthcare
disparities.

Enhance the role of nurses in shaping Al use globally.



Actionable
Strategies and

Opportunities

e Develop 'Minimum Al in Nursing Competencies.'

e |ncorporate Al knowledge at all levels of nursing
curricula.

e Create Al taskforces for practicing nurses.
e Develop guidelines for safe Al implementation.

Research and Leadership

e Research Al's impact on nursing.
e Promote continuous discussion on Al implications.

e Ensure transparency of Al system outputs for
nurses.




VEVOKX

Which area needs the most improvement for effective Al integration
in nursing?

Education and competencies

Practical guidelines and implementation

Join at: Research and understanding impact
MENOX- DD Leadership
ID: All of those

148-736-399




Objectives:

Define artificial intelligence.

. Discuss different
methodologic
approaches that
incorporate artificial
intelligence.

Explore fairness and bias in

artificial intelligence in
research.




Home
healthcare

1. More than 9 million
patients in U.S.

~10,000 home healthcare
agencies

2. Service provided: nursing,
occupational/physical
therapy, social work




Al advances In the last year
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* This picture was generated with Dalee3 (https://openai.com/dall-e-3). Prompt: Generate an infographic-
style image to represent home healthcare in the U.S. Feature a large '9 million' at the center, surrounded by
smaller icons of a home, a nurse, a therapist, and a social worker. Use a neutral color palette to ensure
readability and professionalism.



Home
healthcare

1. More than 9 million
patients in U.S.

~10,000 home healthcare
agencies

2. Service provided: nursing,
occupational/physical therapy,
social work
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VNS Health

Created in 1780 by L. Wald

Provides care to 40K patients
daily in New York City




Key challenge

Home healthcare
goal: promote self-
care and decrease
negative outcomes

However, 1in 5
patients are
admitted to
hospitals or ED




Example 1:
PREVENT

Developed an automated tool -
PREVENT- to identify high-risk
patients during hospital discharge
[1].

High-risk patients are prioritized
for nursing care - they receive
home visits within 48 hours of
hospital discharge.

RERSVETT

0
45 .HOURS 30

(PR ]




PREVENT
¢y for First Home Health Visit Tool PREVENT" is copyrighted and is used ONLY with permission
from Maxim Topaz 267-994-2751, mtopaz8() @ gmail.com

Example 1:
[
tule: Sum scores as follows. Any score >26 would suggest high priority for the first home health
visit.
P R EV E N I Question: (Response =Score) Score

Count the NUMBER OF MEDICATIONS prescribed to the patient =

Count the NUMBER OF COMORBID CONDITIONS patient has =

RiSk fa ctors: Does the patient have a comorbid condition of DEPRESSION (e.g. Depressive
disorder, NEC)?
NO =0
Presence of wounds
YES = 15

Depression
Toileting status
Number of medications

Number of comorbid
d i Does the patient have LIMITATION IN TOILETING functional ability requiring use of
con |t|OnS any assistive equipment, assistive person or both?

Does the patient have WOUND of any type?
NO=0

YES = 15

NO=0

YES = 20

Total Score:



Example 1:
PREVENT

Pilot study showed 30% -
hospitalization and ED visit b o 0
risk reduction [2]. 7 R 45 HOURS 30

RERSVETT

(PR ]

Large clinical trial ongoing
now [ROINR018831].
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Example 2:
HOMECARE-
CONCERN
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Clinical notes contain key
information for risk detection [3].
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Busy clinicians struggle to review all
information about their patients.
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Example 2:
HOMECARE-
CONCERN

Using natural language processing to
develop risk prediction during routine
home healthcare services [4].

Making machine learning risk prediction
unbiased and clinically explainable.

Large clinical trial ongoing now
[RO1HS027742].




> J Am Med Dir Assoc. 2023 Dec;24(12):1874-1880.e4. doi: 10.1016/j.jamda.2023.06.031.
Epub 2023 Aug 5.

Social Risk Factors are Associated with Risk for
Hospitalization in Home Health Care: A Natural

Language Processing Study

Mollie Hobensack 1IJiyoun Song = Sungho Oh 3 Lauren Evans 4, Anahita Davoudi 4,

Kathryn H Bowles > Margaret V McDonald 4 Yolanda Barrén 4, Sridevi Sridharan 4,

Andrea S Wallace ©, Maxim Topaz ’




> Nurs Res. 2022 Jul-Aug;71(4):285-294. doi: 10.1097/NNR.0000000000000586. Epub 2022 Feb 16.

Detecting Language Associated With Home
Healthcare Patient's Risk for Hospitalization and

Emergency Department Visit

Jiyoun Song, Marietta Ojo, Kathryn H Bowles, Margaret V McDonald, Kenrick Cato,
Sarah Collins Rossetti, Victoria Adams, Sena Chae, Mollie Hobensack, Erin Kennedy, Aluem Tark,

Min-Jeoung Kang, Kyungmi Woo, Yolanda Barron, Sridevi Sridharan, Maxim Topaz

PMID: 35171126 PMCID: PM(C9246992 DOI: 10.1097/NNR.0000000000000586




Table 1

Evaluation of NLP Algorithm Performance via Gold-Standard Manual Review (Total n = 1,000 Clinical Notes)

Total frequency and proportion of
The Omaha System problems Precision | Recall
documentation [%(n)]

Neuro-musculo-skeletal function 16% (78) 0.99 0.76

Pain 14% (68) 084 095

Circulation 9% (47) 0.94 0.80

Mental health 9% (47) 0.96 0.75

Skin 9% (46) 093  0.80

Health care supervision 7% (35) 1.00 0.61

Cognition 7% (34) 0.97 0.89

Respiration 6% (32) 0.97 0.78

Communicable infectious

condition 4% (18)

Social contact 3% (17)

Digestion hydration 3% (14)

Medication regimen 2% (9)

Bowel function 2% (8)




Figure 2. The temporal pattern of risk factors documented in clinical notes.

Risk factor documented

——— —— ~ Cluster 1: No Risk Factors
—— Cluster 2: Steeply Decreased

—— Cluster 3: Decreased
—— Cluster 4: Steeply Increased

} — (Cluster 5: Decreased and Rebound Increased
~— Cluster 6: Steadily Present

Documented risk factors

JOURNAL ARTICLE FEATURED
Uncovering hidden trends: identifying time
trajectories in risk factors documented in clinical
notes and predicting hospitalizations and
emergency department visits during home health

. care
Tlme Jiyoun Song ™, Se Hee Min, Sena Chae, Kathryn H Bowles, Margaret V McDonald,
Mollie Hobensack, Yolanda Barrdn, Sridevi Sridharan, Anahita Davoudi, Sungho Oh ...

Show more

Journal of the American Medical Informatics Association, Volume 30, Issue 11, November
2023, Pages 1801-1810, https://doi-



The verbal signal is everywhere!

Human interaction is key in healthcare! We talk to patients and their families about
iIssues, symptoms, social determinants, etc.

Some of those discussions will be documented in the electronic health records (but
not everything:).

Can you guess the percentage of patient
problems documented in electronic health
records? Piease share your estimates by raising a hand as | read through the

scale below:

0% 25% 50% 75% 100%

o o o S







Example 3: Speech
recognition

Verbal signal is everywhere!

50% of patient problems are not
documented in electronic health
record systems [5]

|dentified the most accurate
automatic speech recognition
system

Under-documentation of problems
among Black patients is twice
higher (65%) than among White
patients (34%)




Verbal signal is everywhere!

Study: Applying NLP to
automatically identify risk
factors in patient-nurse
communication[6].

Methods: Modified our
previously developed NLP
algorithm and applied it on
patient-nurse transcribed
conversations.

Results: NLP algorithms

achieved good risk factor
identification performance
levels (F-score= .91)

Figure 4:
Examples of
linguistic
features

Speaker type
identification: 4
patient, nurse

Linguistic Inquiry and
Word Count:

psychological process p

(negative emotions:
hate), negations
(don’t remember)

NLP of risk factors: dyspnea,

Lexical richness: token (word)

count= 31, type (distinct

words) count= 27, type/token

ratio= 0.87

Part of speech tagging: fatigue, leg edema, memory
pronoun (1), verb (feel), bl If-
onol problems, poor se
adjective (short of breath) management
3 »

'
|

Transcribed patient-nurse communication:

| 0:00 Nurse: "How are you?”

0:03 Patient: “| feel short of breath today”

0:07 Nurse: “Anything else bothers you?'

0:14 Patient: “Yes [long pause| | am feeling tired and my legs are swollen more than usual.”

0:18 Nurse: "Were you able to restrict how much water you drink, as we discussed?”

| 0:21 Patient: | hate that | don’t remember you said that..."

-

)




> J Am Med Inform Assoc. 2024 Jan 18;31(2):435-444. doi: 10.1093/jamia/ocad195.

Utilizing patient-nurse verbal communication in
building risk identification models: the missing

critical data stream 1n home healthcare

Maryam Zolnoori 1 2 Sridevi Sridharan, Ali Zolnour 3, Sasha Vergez 2 Margaret V McDonald 2
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Can we improve risk prediction?

Study: Using machine learning to improve the accuracy of hospitalization/ED
visit risk prediction in HHC.

Methods: We used patient-nurse verbal communications with 46 unique
patients. 15% were hospitalized or visited an ED during their HHC.

Results: 26% improvement in models’ risk predictive performance when
data extracted from audio recordings were added to models that used data from
the standard assessment (OASIS) and NLP risk factors.

Coml;ination of OASIS and clinical notes and audio-recorded encnuhters for all 5vailable encdunters

OASIS + features extracted from clinical notes SVM-RBF | 86.54 75.01
OASIS + features extracted from clinical notes + features extracted XGB 96.79 87.5
from the patient’s speech during an encounter

OASIS + features extracted from clinical notes + features extracted SVM-RBF
from the patient’s speech during an encounter + the nurse’'s speech

during an encounter.




Can we improve
risk prediction?

The analysis revealed that patients
at high risk tended to:

1. Interact more with risk-
associated cues

2. Exhibit more "sadness" and
"anxiety”

2. Have extended periods of
silence during conversation




Objectives:

Define artificial intelligence.

Discuss different methodologic
approaches that incorporate
artificial intelligence.

Explore fairness
and bias in
artificial
intelligence In
research.




What is bias in Al, and how do we use Al for bias detection?

1. Bias in homecare risk prediction modeling
2. Bias in child abuse and neglect predictive

Research Examples: modeling
3. Using Al to detect language bias in homecare and
obstetrics

Summary & future directions



S

Example 1:

Fairness Analysis in the Prediction
of Hospitalization or Emergency
Department Visits for Home
Healthcare Patients



Introduction

» Al models predict outcomes but may introduce
bias.

» Developed an effective HF risk model.

» Assessing fairness across subgroups.

» Objective: to analyze biases, assess
performance disparities, and discuss solutions
to improve model fairness

Davoudi, A., Chae, S., Evans, L., Sridharan, S., Barron, Y., Song, J., Hobensack, M., Bowles, K.H.,
McDonald, M.V., Min, S.H., Oh, S., & Topaz, M.* Fairness Analysis in the prediction of Hospitalization or
Emergency Department Visits in Home Healthcare for Patients with Heart Failure. AMIA 2023 Annual
Symposium, New Orleans, LA. [Podium presentation]. 2023.




Methods - Study
Population and
Datasets

* Diverse Study Population

* Comprehensive Data Sources
e Structured Data Insights
e Unstructured Data Clarity

e Qutcome (Hospitalization or ED
visits)

* ADI Score

* NLP Techniques Leveraged



Methods - Risk
Prediction Model #

* Fairness Assessment Scope
e Six Metrics Evaluated

* Composite Metric Insight

' "Beseyrveniduiine’

4 $ = Emodeting ' i
Ljf) : £ 0 ' "Imgornem” -+- * 1l miugling
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Results

HISPANIC, MALE, HIGH-ADI
OTHER, MALE, LOW-ADI
WHITE, FEMALE, LOW-ADI
BLACK, FEMALE, HIGH-ADI
WHITE, MALE, LOW-ADI
WHITE, FEMALE, HIGH-ADI
ALL PATIENTS

HISPANIC, MALE, LOW-ADI
OTHER, MALE, HIGH-ADI
BLACK, MALE, HIGH-ADI
WHITE, MALE, HIGH-ADI
BLACK, MALE, LOW-ADI
OTHER, FEMALE, HIGH-ADI
HISPANIC, FEMALE, HIGH-ADI
OTHER, FEMALE, LOW-ADI
BLACK, FEMALE, LOW-ADI
HISPANIC, FEMALE, LOW-ADI

Average Relative Performance to Best

86%

X

76%

70% 75%

78%

|
80%

80%

82%
82%

8

84%
84%
84%
84%

85%

85%

87%
87%

88%

90%

95%



Discussion

First study assessing fairness of Al-based risk prediction
models for patient hospitalization/ED visits in HHC across
diverse subpopulations.

Introduced Average Relative Performance to Best, revealing
substantial risk prediction disparities across patient
demographics.

Variations in key performance metrics, emphasizing the need
for model refinement.

42



VeVvOoK

How confident are you that current Al systems in healthcare are free
from bias?

Very confident

Somewhat confident

Join at:
vevoxX.app Neutral
IDX Not very confident
148-736-399

Not confident at all




Example 2: Bias in Al
Detecting Child Abuse and

Neglect



The Challenge in Detecting Child Abuse and Neglect

 Problem Statement: Child abuse
and neglect are prevalent but often
go undetected.

* Need for Timely Detection: Risk
models can improve detection, but
development is complex.

 Data Bias Concern: Existing U.S.
data shows disproportionate
evaluation of Black and Hispanic
children compared to White
children, potentially reflecting
societal biases.




The Dilemma In
Developing Risk
Models

* Impact of Bias: Using biased
data risks perpetuating these

disparities in new models.

Key Question: How do we
develop effective risk models
without embedding existing
societal biases?




Study 1: Considerations for Child
Abuse and Neglect Phenotype

* Objective: Develop a phenotype for child abuse and neglect using
Emergency Department (ED) data from EHRs, with implications for
reducing racial bias.

e Methodology: Qualitative study with 20 pediatric clinicians in a pediatric
ED.

* Results:
 Challenges in diagnosing abuse and neglect.
e \Variations in documentation styles across health disciplines.
* Potential racial bias in documentation.

* Conclusions: The study highlights the challenges in building an EHR-based
risk phenotype for child abuse and neglect and underscores the need for
further research in this area

Landau AY, Blanchard A, Cato K, Atkins N, Salazar S, Patton DU, Topaz M. Considerations for development of child abuse
phenotype with implications for reduction of racial bias: a qualitative study. ] Am Med Inform Assoc. 2022 Jan 29;29(3)
10.1093/jamia/ocab275. PMID: 35024857; PMCID: PMC8800508



Study 2: Ethical Challenges in Al Models

Objective: To discuss the ethical challenges in developing machine learning
models for identifying child abuse and neglect using EHR data.

Seven Key Ethical Challenges:

1. Data Biases: Risk of perpetuating existing racial and socioeconomic biases.

2. Documentation System Issues: Inconsistencies and inaccuracies in clinical
notes.

3. Lack of Standardized Assessment Methods: No uniform criteria for
identifying abuse and neglect.

4. grivacy Concerns: Ensuring patient confidentiality while using sensitive
ata.

5. Mo((jiell Transparency: Difficulty in interpreting complex machine learning
models.

Landau AY, Ferrarello S, Blanchard A, Cato K, Atkins N, Salazar S, Patton DU, Topaz M. Developing machine

learning-based models to help identify child abuse and neglect: key ethical challenges and recommended

solutions. J Am Med Inform Assoc. 2022 Jan 29;29(3):576-580. doi: 10.1093/jamia/ocab286. PMID: 35024859;

PMCID: PMC8800514 -

48
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Example 3: Linguistic Bias
in Home Healthcare/ Birth &
Delivery



Example:
ldentifying biases
via language

e Study question: Investigate racial
differences in judgment language
use in clinical notes.

 Methods: Data from 45,384
patients who received home health
care services in 2019, using a
natural language processing
algorithm to detect judgment
language in clinical notes.
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Example: Identifying biases via language

Results:

Judgment language observed in 38% of patients, with higher usage in
Hispanic and Black patients' notes.

Black and Hispanic patients were 14% more likely to have notes with
judgment language than White patients.

Large clinical trial ongoing to observe a nationwide sample

Examples from clinical notes

*...claims smoking cessation but ash tray still noted on night stand.”
“pt [patient] claims he had fever in past, but no thermometer in use.”

“He has a rw [rolling walker] but pt [patient] only uses it to get up fr [from] the bed. pt demoed another safe method
of getting out of the bed. but pt insisted of doing it on his own manner.”



The Power of Language in Hospital Care

 Objective: Analyze the role of
language in pregnancy and birth
care, focusing on marginalized
identities.

e Results:

* Highlighted how stigmatizing
language perpetuates power
dynamics and biases.

* Recommendations for alternative
language use at individual and
systemic levels.

 Conclusions: Proposed a cultural
shift in hospital-based care for
birthing people to center their
needs and experiences

Barcelona V, Horton RL, Rivlin K, Harkins S, Green C, Robinson K, Aubey J, Holman A, Goffman D, Haley
S, Topaz M.* (2023). The power of language in hospital care for pregnant and birthing people: A vision for
change. Obst & Gyn. [ACCEPTED June 2023].




Stigmatizing Language in Birth
Admission Clinical Notes

* Objective: Identify stigmatizing
language in clinical notes of pregnant
people during birth admission.

e Results:

* Found stigmatizing language in categories
such as Disapproval, Questioning patient
credibility, and Power/privilege.

e Stigmatizing language was most frequent
in triage notes.

 Conclusions: The study underscores
the need for tailored interventions to
improve perinatal outcomes and
address biases in clinical
documentation




Examples of stigmatizing language

1. Questioning Patient Credibility
1. "Reports ‘no time to get depressed with 4 kids

n

2. "SW is uncertain as to whether the patient was answering SW's questions truthfully"

2. Disapproval

1. "Postpartum birth control method - patient states that she prefers to use condoms
and will continue to readdress”

2. "The writer asked if the patient wanted to see the lactation consultant again and the
patient refused"”

3. Stereotyping

1. "When the SW intern asked where the baby will be sleeping upon arrival home. The
father of the baby states that the baby will sleep in their bed. SW intern discussed
that although this may be cultural, it is important for the baby to have his own bed"

#Barcelona, V., Scharp, D., Idnay, B. R., Moen, H., Goffman, D., Cato, K., & Topaz, M.* (2023). A qualitative analysis
of stigmatizing language in birth admission clinical notes. Nurs Inq, 30(3), e12557.
https://doi.org/10.1111/nin.12557 PMID: 37073504



Do you believe healthcare professionals receive adequate training
on understanding and addressing Al biases?

Strongly agree

Agree

Join at: Neutral

vevox.app Disagree

ID: Strongly disagree

148-736-399




Personal Al use

Drafts of recommendation letters (e.g., GPT-pro, Gemini,
Claude 3 Opus)

Refine (shorten/expand/edit) my and others writing (e.g., GPT-
pro, Gemini, Claude 3 Opus)

Write programming code (e.g., GPT-pro, Gemini, Claude 3
Opus)

Brainstorm ideas (e.g., GPT-pro, Gemini, Claude 3 Opus)
Search the internet for specific things (e.g., Perplexity.ai)



Key Takeaways

i
@

Implement Al-Based Analysis: Regularly utilize Al tools to enhance nursing data
analysis to improve patient care. This could involve adopting specific Al software
or methodologies.

Tailor Healthcare Delivery: Integrate Al insights into healthcare practices to
provide more personalized care to individuals and communities, reflecting the
diverse needs and health profiles.

Emphasize Ethical Al Use: Educate and empower healthcare professionals to
recognize and address fairness and bias in Al applications, ensuring the ethical
use of Al in research and clinical practice.
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